Q Factor Corrections for the source resistance and inductance plus corrections for Lc and Rp of resonating capacitor

$\mathrm{Qm}=\mathrm{Q}$ at measured resonant frequency: $\mathrm{f}(\mathrm{MHz})$
Q1 = Q corrected for L only
$\mathrm{Qc}=\mathrm{Q}$ of capacitor C coming from Rp
Rp = Votmeter resistance (across C)
fo = computed resonant frequency of L and C only (MHz)
$\mathrm{L}=$ Indu ctance of inductor under test: $\mathrm{L}(\mu \mathrm{H})$
$\mathrm{C}=$ Resonant capacitor (pF)
Lc = Residual inductance of Resonant Capacitor C ($\mu \mathrm{H}$)
Ls = Source inductance ($\mu \mathrm{H}$)
Xc = Effective Reactance of C at resonance at frequency: f
$X L=$ Reactance of L at resonance at frequency: f
Rs = Source resistance (Ω)
Rsc $=$ ESR of inductor under test (Ω)
$X c=\frac{10^{6}}{2 \cdot \pi \cdot f \cdot C}-2 \cdot \pi \cdot f \cdot L c \quad X c$ is the effective reactance of C is in $p F$ at: f
$\mathrm{Qc}=\frac{\mathrm{Rp}}{\mathrm{X}} \quad \mathrm{Qc}=$ factor of the capacitor, including Rp the parallel resistance of
$X L s=2 \cdot \pi \cdot f \cdot$ Ls \quad Reactance of source Ls in $\mu \mathrm{H}$ at: f
$\mathrm{Xc}=\mathrm{XL}+\mathrm{XLs} \quad$ At resonance: f
$\mathrm{XL}=\mathrm{Xc}-\mathrm{XLs} \quad$ At resonance: f
$X L=\frac{10^{6}}{2 \cdot \pi \cdot f \cdot C}-2 \cdot \pi \cdot f \cdot L s \quad$ At resonance: f
$L=\frac{X L}{2 \cdot \pi \cdot f} \quad L$ of inductor only μH
$\frac{\mathrm{f}}{\mathrm{fo}_{0}}=\sqrt{\frac{\mathrm{L}}{\mathrm{L}+\mathrm{Ls}+\mathrm{Lc}}} \quad \begin{aligned} & \text { The resonant frequencies are inversley proportional to the } \\ & \text { square root of the inductances }\end{aligned}$
fo $=\frac{f}{\sqrt{\frac{L}{L+L s+L c}}}$
This is the resonant freq of L and C only

Calculate the Q of L at fo
$\mathrm{Qm} 1=\frac{2 \cdot \pi \cdot \mathrm{f} \cdot(\mathrm{L}+\mathrm{Ls})}{\mathrm{Rs}+\mathrm{Rsc}} \quad \mathrm{Qm} 1=\mathrm{Q}$ of the Inductances without the Capacitor
$\frac{1}{\mathrm{Qm}}=\frac{1}{\mathrm{Qm} 1}+\frac{1}{\mathrm{Qc}} \quad$ Combining the inductor and capacitor $\mathrm{Q}^{\prime} \mathrm{s}$
$\mathrm{Qm} 1=\frac{1}{\frac{1}{\mathrm{Qm}}-\frac{1}{\mathrm{Qc}}} \quad$ Solving for Qm1
$\mathrm{Qm} 1=\frac{\mathrm{Qc} \cdot \mathrm{Qm}}{\mathrm{Qc}-\mathrm{Qm}} \quad$ Rearranging
Rsc $=\frac{2 \cdot \pi \cdot \mathrm{f} \cdot(\mathrm{L}+\mathrm{Ls})}{\mathrm{Qm} 1}-\mathrm{Rs} \quad \begin{aligned} & \text { Solve for Rsc, the ESR of the inductor, } \\ & \text { assumed to be constant at } \mathrm{f} \text { and fo }\end{aligned}$
Substitute the expression for Qm1 above into Rsc
$\mathrm{Rsc}=-\frac{\mathrm{Qc} \cdot \mathrm{Qm} \cdot \mathrm{Rs}-2 \cdot \pi \cdot \mathrm{~L} \cdot \mathrm{Qc} \cdot \mathrm{f}+2 \cdot \pi \cdot \mathrm{~L} \cdot \mathrm{Qm} \cdot \mathrm{f}-2 \cdot \pi \cdot \mathrm{Ls} \cdot \mathrm{Qc} \cdot \mathrm{f}+2 \cdot \pi \cdot \mathrm{Ls} \cdot \mathrm{Qm} \cdot \mathrm{f}}{\mathrm{Qc} \cdot \mathrm{Qm}}$
$\mathrm{Rsc}=\frac{2 \cdot \pi \cdot \mathrm{~L} \cdot \mathrm{f}}{\mathrm{Qm}}-\frac{2 \cdot \pi \cdot \mathrm{~L} \cdot \mathrm{f}}{\mathrm{Qc}}-\mathrm{Rs}-\frac{2 \cdot \pi \cdot \mathrm{Ls} \cdot \mathrm{f}}{\mathrm{Qc}}+\frac{2 \cdot \pi \cdot \mathrm{Ls} \cdot \mathrm{f}}{\mathrm{Qm}} \quad$ Rearranging
$\mathrm{Rsc}=\frac{2 \cdot \pi \cdot \mathrm{f} \cdot(\mathrm{L}+\mathrm{Ls})}{\mathrm{Qm}}-\frac{2 \cdot \pi \cdot \mathrm{f} \cdot(\mathrm{L}+\mathrm{Ls})}{\mathrm{Qc}}-\mathrm{Rs} \quad \quad$ Rearranging
$\mathrm{Rsc}=2 \cdot \pi \cdot \mathrm{f} \cdot(\mathrm{L}+\mathrm{Ls}) \cdot\left(\frac{1}{\mathrm{Qm}}-\frac{1}{\mathrm{Qc}}\right)-\mathrm{Rs} \quad \quad$ Rearranging
$\mathrm{Q} 1=\frac{2 \cdot \pi \cdot \mathrm{fo} \cdot \mathrm{L}}{\text { Rsc }} \quad$ The corrected Q of inductor $=\mathrm{Q} 1$ at fo

Example 1 Lc set to 10 nH The corrected Q = Q1 is Correct
$\mathrm{Qm}:=168.87 \quad$ Rs $:=0.05 \quad \mathrm{Ls}:=0.005 \quad \mu \mathrm{H} \quad \mathrm{f}:=46.294 \mathrm{MHz} \quad \mathrm{C}:=112.561$
$\mathrm{Rp}:=56000 \quad$ Lc $:=0.010$
Xc $:=\frac{10^{6}}{2 \cdot \pi \cdot f \cdot \mathrm{C}}-2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{Lc}=27.634 \quad$ Effective Xc
$\mathrm{Qc}:=\frac{\mathrm{Rp}}{\mathrm{Xc}}=2.026 \times 10^{3} \quad \mathrm{Q}$ of resonant capacitor C coming from Rp
$\mathrm{XL}:=\mathrm{Xc}-2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{Ls}=26.18 \quad$ Reactance of coil under test
$\mathrm{L}:=\frac{\mathrm{XL}}{2 \cdot \pi \cdot f}=0.09 \quad$ Inductance of coil under test
fo $:=\frac{\mathrm{f}}{\sqrt{\frac{L}{L}}}=50.003 \quad$ This is the resonant freq fo of L and C only

$$
\mathrm{Rsc}:=2 \cdot \pi \cdot \mathrm{f} \cdot(\mathrm{~L}+\mathrm{Ls}) \cdot\left(\frac{1}{\mathrm{Qm}}-\frac{1}{\mathrm{Qc}}\right)-\mathrm{Rs}=0.100004
$$

Q @ fo of inductor only, after corrections

$$
\mathrm{Q} 1:=\frac{2 \cdot \pi \cdot \mathrm{fo} \cdot \mathrm{~L}}{\operatorname{Rsc}}=282.76
$$

Simulations (see top of first page)

Mag[E21] is the voltage (ratio) obtained on a standard Q measurement Mag[E23] is the voltage ratio: V across Cap / V at source output.

Example 2 Lc set to 0 The corrected Q $=$ Q1 is Correct
$\begin{array}{llll}\mathrm{Am}:=176 \quad \underset{\mathrm{Ms}}{\mathrm{Mm}}:=0.05 \quad \mathrm{Ls}:=0.005 \quad \mu \mathrm{H} & \underset{\mathrm{M}}{\mathrm{f}}:=48.669 \mathrm{MHz} & \underset{\mathrm{M}}{\mathrm{C}}:=112.561 \\ & \mathrm{Rp}:=56000 & \mathrm{Lc}:=0.000\end{array}$
$\mathrm{Xc}:=\frac{10^{6}}{2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{C}}-2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{Lc}=29.052$
Effective Xc
$\mathrm{Qc}:=\frac{\mathrm{Rp}}{\mathrm{Xc}}=1.928 \times 10^{3} \quad \mathrm{Q}$ of resonant capacitor C coming from Rp
$\underset{\mathrm{XL}}{\mathrm{X}}:=\mathrm{Xc}-2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{Ls}=27.523 \quad$ Reactance of coil under test
$\mathrm{L}:=\frac{\mathrm{XL}}{2 \cdot \pi \cdot f}=0.09001 \quad$ Inductance of coil under test
fo $:=\frac{\mathrm{f}}{\sqrt{\frac{\mathrm{L}}{\mathrm{L}+\mathrm{Ls}+\mathrm{Lc}}}}=50.003$
This is the resonant freq fo of L and C only

ESR of inductor under test (Ω)
$\mathrm{Rsc}_{\mathrm{Rsc}}:=2 \cdot \pi \cdot f \cdot(\mathrm{~L}+\mathrm{Ls}) \cdot\left(\frac{1}{\mathrm{Qm}}-\frac{1}{\mathrm{Qc}}\right)-\mathrm{Rs}=0.099998$

Q @ fo of inductor only, after corrections
$\mathrm{O} 1:=\frac{2 \cdot \pi \cdot \mathrm{fo} \cdot \mathrm{L}}{\mathrm{Rsc}}=282.781$

Example 3 Lc and Ls set to 0 The corrected $\mathrm{Q}=\mathrm{Q} 1$ is correct

Om: $=172.126$	Rs: $=0.05$	Ls: $=0.000$	$\mu \mathrm{H}$	f: $=50$	MHz		$=112.561$
				Rp ${ }_{\text {m }}=$			$\mathrm{c}:=0.000$

$\mathrm{Xc}:=\frac{10^{6}}{2 \cdot \pi \cdot f \cdot \mathrm{C}}-2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{Lc}=28.279 \quad$ Effective Xc
$\mathrm{Oc}:=\frac{\mathrm{Rp}}{\mathrm{Xc}}=1.98 \times 10^{3} \quad \mathrm{Q}$ of resonant capacitor C coming from Rp
$\mathrm{XL}:=\mathrm{Xc}-2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{Ls}=28.279 \quad$ Reactance of coil under test
$\mathrm{L}:=\frac{\mathrm{XL}}{2 \cdot \pi \cdot f}=0.09001 \quad$ Inductance of coil under test
fo $:=\frac{\mathrm{f}}{\sqrt{\frac{L}{L t+L s+L c}}}=50 \quad$ This is the resonant freq fo of L and C only

ESR of inductor under test (Ω)
$\mathrm{Rsc}:=2 \cdot \pi \cdot \mathrm{f} \cdot(\mathrm{L}+\mathrm{Ls}) \cdot\left(\frac{1}{\mathrm{Qm}}-\frac{1}{\mathrm{Qc}}\right)-\mathrm{Rs}=0.100011$

Q @ fo of inductor only, after corrections
$\mathrm{Q1}:=\frac{2 \cdot \pi \cdot \mathrm{fo}^{2} \cdot \mathrm{~L}}{\text { Rsc }}=282.756$

Red curve: Measured Qm at f (1a). Blue: wrong Q=247.4 @ 50 MHz (2b)

Example $4 L c$ and Ls set to 0 The corrected $Q=Q 1$ is correct

$\mathrm{Am}:=188.51$	$\mathrm{Rs}:=0.05$	$\mathrm{Ls}:=0.000$	$\mu \mathrm{H}$	$\mathrm{f}:=50$
		$\mathrm{Mp}:=10^{10}$	MHz	$\underset{\mathrm{N}}{\mathrm{Cl}}:=112.561$
	$\mathrm{Lc}:=0.000$			

$X \mathrm{C}:=\frac{10^{6}}{2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{C}}-2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{Lc}=28.279 \quad$ Effective Xc
$\mathrm{Oc}:=\frac{\mathrm{Rp}}{\mathrm{Xc}}=3.536 \times 10^{8} \quad \mathrm{Q}$ of resonant capacitor C coming from Rp
$\mathrm{XL}:=\mathrm{Xc}-2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{Ls}=28.279 \quad$ Reactance of coil under test
$\mathrm{L}:=\frac{\mathrm{XL}}{2 \cdot \pi \cdot f}=0.09001 \quad$ Inductance of coil under test
fo $:=\frac{\mathrm{f}}{\sqrt{\frac{L}{L+L s+L c}}}=50 \quad$ This is the resonant freq fo of L and C only

ESR of inductor under test (Ω)
$\underset{\mathrm{Rsc}}{\mathrm{Rs}}:=2 \cdot \pi \cdot f \cdot(\mathrm{~L}+\mathrm{Ls}) \cdot\left(\frac{1}{\mathrm{Qm}}-\frac{1}{\mathrm{Qc}}\right)-\mathrm{Rs}=0.100013$

Q @ fo of inductor only, after corrections
$\mathrm{Q} 1:=\frac{2 \cdot \pi \cdot \text { fo } \cdot \mathrm{L}}{\text { Rsc }}=282.753$

Conclusion

Computing Mag[E23] the voltage ratio: V across Cap / V at source output ONLY gives the right results when Rp is very high (negligible).
The Mathcad corrections provide the right Q factor of the coil under test under ALL conditions.

Red curve: Measured Qm at f (1a). Blue: correct $\mathrm{Q}=\mathbf{2 8 2 . 7}$ @ $50 \mathrm{MHz}(2 \mathrm{~b})$

Calculation of $R p$ (Mohms) vs frequency $f(\mathrm{MHz})$
$R \mathrm{Rp}(\mathrm{f}):=10^{\left(2574.584367+6.708083 \cdot \mathrm{f}^{-0.15}+26.44179 \cdot \ln (\mathrm{f})-2580.071643 \cdot \mathrm{f}^{0.01}\right)}$
Ref : Boonton260_Rp Curve.xls.xmcd
Ref. Q Meter Source Sim.wsp

