

Calculate the Q of L at fo

$$Qm1 = \frac{2 \cdot \pi \cdot f \cdot (L + Ls)}{Rs + Rsc} \qquad Qm1 = Q \text{ of the Inductances without the Capacitor}$$

$$\frac{1}{Qm} = \frac{1}{Qm1} + \frac{1}{Qc} \qquad Combining the inductor and capacitor Q's$$

$$Qm1 = \frac{1}{\frac{1}{Qm} - \frac{1}{Qc}} \qquad Solving for Qm1$$

$$Qm1 = \frac{Qc \cdot Qm}{Qc - Qm} \qquad Rearranging$$

$$Rsc = \frac{2 \cdot \pi \cdot f \cdot (L + Ls)}{Qm1} - Rs \qquad Solve for Rsc, the ESR of the inductor, assumed to be constant at f and fo$$
Substitute the expression for Qm1 above into Rsc
$$Rsc = -\frac{Qc \cdot Qm \cdot Rs - 2 \cdot \pi \cdot L \cdot Qc \cdot f + 2 \cdot \pi \cdot L \cdot Qm \cdot f - 2 \cdot \pi \cdot Ls \cdot Qc \cdot f + 2 \cdot \pi \cdot Ls \cdot Qm \cdot f}{Qc \cdot Qm}$$

$$Rsc = \frac{2 \cdot \pi \cdot f \cdot (L + Ls)}{Qm} - \frac{2 \cdot \pi \cdot L \cdot f}{Qc} - Rs - \frac{2 \cdot \pi \cdot L \cdot s \cdot f}{Qc} - Rs \qquad Rearranging$$

$$Rsc = 2 \cdot \pi \cdot f \cdot (L + Ls) - \frac{2 \cdot \pi \cdot f \cdot (L + Ls)}{Qm} - \frac{2 \cdot \pi \cdot f \cdot (L + Ls)}{Qc} - Rs \qquad Rearranging$$

$$Rsc = 2 \cdot \pi \cdot f \cdot (L + Ls) \cdot \left(\frac{1}{Qm} - \frac{1}{Qc}\right) - Rs \qquad Rearranging$$

$$Rsc = 2 \cdot \pi \cdot f \cdot (L + Ls) \cdot \left(\frac{1}{Qm} - \frac{1}{Qc}\right) - Rs \qquad Rearranging$$

 $Q1 = \frac{2 R m}{Rsc}$

The corrected Q of inductor = Q1 at fo

Example 1 Lc set to 10 nH The corrected Q = Q1 is Correct

f := 46.294 MHz C := 112.561Qm := 168.87 Rs := 0.05 Ls := 0.005 μ H Rp := 56000Lc := 0.010 $Xc := \frac{10^6}{2 \cdot \pi \cdot f \cdot C} - 2 \cdot \pi \cdot f \cdot Lc = 27.634$ Effective Xc $Qc := \frac{Rp}{Xc} = 2.026 \times 10^3$ Q of resonant capacitor C coming from Rp $XL := Xc - 2 \cdot \pi \cdot f \cdot Ls = 26.18$ Reactance of coil under test $L := \frac{XL}{2 \cdot \pi \cdot f} = 0.09$ Inductance of coil under test fo := $\frac{f}{\sqrt{\frac{L}{L + Ls + Lc}}} = 50.003$ This is the resonant freq fo of L and C only Q @ fo of inductor only, ESR of inductor under test (Ω) after corrections $\operatorname{Rsc} := 2 \cdot \pi \cdot f \cdot (L + Ls) \cdot \left(\frac{1}{\operatorname{Qm}} - \frac{1}{\operatorname{Qc}}\right) - \operatorname{Rs} = 0.100004$ $Q1 := \frac{2 \cdot \pi \cdot \text{fo} \cdot L}{\text{Rsc}} = 282.76$

Simulations (see top of first page)

Mag[E21] is the voltage (ratio) obtained on a standard Q measurement Mag[E23] is the voltage ratio: V across Cap / V at source output.

Example 3 Lc and Ls set to 0 T	he corrected Q	= Q1 is corre	ct		
Qm := 172.126 Rs := 0.05 Ls :=	= 0.000 µH	f.:= 50	MHz	<u>C</u> := 112.561	
		Rp:= 56000)	Lc.:= 0.000	
$X_{c} := \frac{10^{\circ}}{2 \cdot \pi \cdot f \cdot C} - 2 \cdot \pi \cdot f \cdot Lc = 28.279$	Effective Xo)			
$Qc := \frac{Rp}{Xc} = 1.98 \times 10^3$	Q of resonant of	capacitor C c	oming from	m Rp	
$XL := Xc - 2 \cdot \pi \cdot f \cdot Ls = 28.279$	Reactance of c	coil under test			
$L := \frac{XL}{2 \cdot \pi \cdot f} = 0.09001$	Inductance of coil under test				
$f_{\text{O}} := \frac{f}{\sqrt{\frac{L}{L + Ls + Lc}}} = 50$	This is the reso	onant freq fo	of L and C	C only	
ESP of inductor under test (0)			Q @ fo o	of inductor only,	

$$\operatorname{Rsc}_{c} := 2 \cdot \pi \cdot f \cdot (L + Ls) \cdot \left(\frac{1}{Qm} - \frac{1}{Qc}\right) - Rs = 0.100011$$

Q @ fo of inductor only, after corrections $Q_{1} := \frac{2 \cdot \pi \cdot \text{fo} \cdot \text{L}}{\text{Rsc}} = 282.756$

Example 4 Lc and Ls set to 0 T					
Qm := 188.51 $Rs := 0.05$ $Ls :=$	= 0.000 μH	$f_{\text{L}} = 50$ $Rp_{\text{L}} = 10^{10}$	MHz	$C_{\text{LC}} := 112.561$ Lc := 0.000	
$Xc := \frac{10^6}{2 \cdot \pi \cdot f \cdot C} - 2 \cdot \pi \cdot f \cdot Lc = 28.279$	Effective Xc	~~~~~		~~~~	
$Qc := \frac{Rp}{Xc} = 3.536 \times 10^8$	Q of resonant c	apacitor C co	oming fro	om Rp	
$XL := Xc - 2 \cdot \pi \cdot f \cdot Ls = 28.279$	Reactance of co	oil under test			
$L := \frac{XL}{2 \cdot \pi \cdot f} = 0.09001$	Inductance of coil under test				
$f_{\text{o}} := \frac{f}{\sqrt{\frac{L}{L + Ls + Lc}}} = 50$	This is the resonant freq fo of L and C only				
ESR of inductor under test (Ω)			Q @ fo after co	of inductor only, prrections	
$\underset{\text{WWWW}}{\text{Rsc}} = 2 \cdot \pi \cdot f \cdot (L + Ls) \cdot \left(\frac{1}{Qm} - \frac{1}{Qc}\right) \cdot$	- Rs = 0.100013		Q1 := -	$\frac{2 \cdot \pi \cdot \text{fo} \cdot \text{L}}{\text{Rsc}} = 282.753$	

Conclusion

Computing Mag[E23] the voltage ratio: V across Cap / V at source output ONLY gives the right results when Rp is very high (negligible).

The Mathcad corrections provide the right Q factor of the coil under test under ALL conditions.

Red curve: Measured Qm at f (1a). Blue: correct Q=282.7 @ 50 MHz (2b)

Calculation of Rp (Mohms) vs frequency f (MHz)

 $\operatorname{Rp}(f) := 10^{\left(2574.584367 + 6.708083 \cdot f^{-0.15} + 26.44179 \cdot \ln(f) - 2580.071643 \cdot f^{0.01}\right)}$

- Ref : Boonton260_Rp Curve.xls.xmcd
- Ref. Q Meter Source Sim.wsp