## SWR and BANDWIDTH OF SERIES / PARALLEL RLC

## 1-Series R L C circuit - Calculations and Simulations

$Z=j \cdot \omega \cdot L+\frac{1}{j \cdot \omega \cdot C}+R$
Impedance of a series R L C
$\mathrm{Q}=\frac{\omega \cdot \mathrm{L}}{\mathrm{R}} \quad$ Then: $\quad \mathrm{R}=\frac{\omega \cdot \mathrm{L}}{\mathrm{Q}}$
Q factors (unloaded !)
$\omega_{o}$ is the resonant frequency
$\mathrm{Q}=\frac{1}{\omega 0 \cdot \mathrm{C} \cdot \mathrm{R}} \quad$ Then: $\quad \mathrm{R}=\frac{1}{\omega 0 \cdot \mathrm{C} \cdot \mathrm{Q}}$
Jacques Audet VE2AZX
Dec 2011
ve2azx@amsat.org
web: ve2azx.net

Eq 1

Eq 2

Eq 3

The impedance in Eq 1 is normalized
$\frac{Z}{R}=j \cdot \omega \cdot \frac{L}{R}+\frac{1}{j \cdot \omega \cdot C \cdot R}+1$
$R=\frac{\omega 0 \cdot L}{Q}=\frac{1}{\omega 0 \cdot C \cdot Q}$
Substitute Eq 5 into Eq 4:
$\frac{Z}{R}=j \cdot \omega \cdot \frac{L \cdot Q}{\omega 0 \cdot L}+\frac{\omega 0 \cdot C \cdot Q}{j \cdot \omega \cdot C}+1$
$\frac{Z}{R}=j \cdot \omega \cdot \frac{Q}{\omega 0}+\frac{\omega 0 \cdot Q}{j \cdot \omega}+1$
After simplification
$\frac{Z}{R}=j \cdot Q \cdot\left(\frac{\omega}{\omega 0}-\frac{\omega 0}{\omega}\right)+1$
Note that at resonance $\omega=\omega$ o
Eq 8
and $Z / R=1$
Eq 6

At $\omega_{H}$ and $\omega_{\mathrm{L}}$ the half power frequencies, the magnitude of $Z / R$ equals $1+j$ Therefore

$$
\left|\mathrm{Q} \cdot\left(\frac{\omega_{\mathrm{H}}}{\omega_{\mathrm{o}}}-\frac{\omega_{\mathrm{o}}}{\omega_{\mathrm{H}}}\right)\right|=\left|\mathrm{Q} \cdot\left(\frac{\omega_{\mathrm{L}}}{\omega_{\mathrm{O}}}-\frac{\omega_{\mathrm{o}}}{\omega_{\mathrm{L}}}\right)\right|=1
$$

$$
\text { Eq } 9
$$

Then

$$
\frac{\omega_{\mathrm{H}}}{\omega_{0}}-\frac{\omega_{0}}{\omega_{\mathrm{H}}}=\frac{\omega_{0}}{\omega_{\mathrm{L}}}-\frac{\omega_{\mathrm{L}}}{\omega_{0}}
$$

Rearranging the terms:

$$
\begin{equation*}
\frac{\omega_{\mathrm{H}}}{\omega \mathrm{O}}+\frac{\omega_{\mathrm{L}}}{\omega \mathrm{O}}=\frac{\omega \mathrm{o}}{\omega_{\mathrm{L}}}+\frac{\omega_{\mathrm{O}}}{\omega_{\mathrm{H}}} \tag{Eq 11}
\end{equation*}
$$

$$
\frac{\omega_{\mathrm{H}}+\omega_{\mathrm{L}}}{\omega \mathrm{\omega}}=\frac{\omega \mathrm{o} \cdot\left(\omega_{\mathrm{H}}+\omega_{\mathrm{L}}\right)}{\omega_{\mathrm{H}} \cdot \omega_{\mathrm{L}}}
$$

Therefore

$$
\begin{aligned}
& \omega_{\mathrm{H}} \cdot \omega_{\mathrm{L}}={\omega 0^{2}}^{\omega_{0}=\sqrt{\omega_{H} \cdot \omega_{\mathrm{L}}}}
\end{aligned}
$$

Rearranging the first term of eq 9 :
$Q \cdot \frac{\left(\omega_{\mathrm{H}}\right)^{2}-\omega^{2}}{\omega 0 \cdot \omega_{\mathrm{H}}}=1$

From a combinaison of Eq 13 and Eq 15 :

$$
\begin{aligned}
& \mathrm{Q} \cdot \frac{\left(\omega_{\mathrm{H}}\right)^{2}-\omega_{\mathrm{H}} \cdot \omega_{\mathrm{L}}}{\omega o \cdot \omega_{\mathrm{H}}}=1 \\
& \mathrm{Q} \cdot \frac{\omega_{\mathrm{H}}-\omega_{\mathrm{L}}}{\omega \mathrm{O}}=1
\end{aligned}
$$

Then
$\omega_{H}-\omega_{L}=\frac{\omega 0}{Q}$
Eq 18
Converting to frequency:

$$
\mathrm{f}_{\mathrm{H}}-\mathrm{f}_{\mathrm{L}}=\frac{\mathrm{f}_{\mathrm{o}}}{\mathrm{Q}}
$$

The bandwidth BW in Hz is defined as:

$$
\mathrm{BW}=\mathrm{f}_{\mathrm{H}}-\mathrm{f}_{\mathrm{L}}
$$

Then from Eq. 19

$$
\mathrm{BW}=\frac{\mathrm{f}_{\mathrm{o}}}{\mathrm{Q}} \quad \text { And: } \quad \mathrm{Q}=\frac{\mathrm{f}_{\mathrm{o}}}{\mathrm{BW}}
$$

Eq 8 repeated

$$
\frac{Z}{R}=j \cdot Q \cdot\left(\frac{\omega}{\omega 0}-\frac{\omega 0}{\omega}\right)+1
$$

## For the SERIES RLC circuit :

We have established that at $\omega=\omega_{\mathrm{H}}$ and $\omega=\omega_{\mathrm{L}}$ the normalized impedance is:
$\frac{Z}{R}=1+j \quad$ or $\quad \frac{Z}{R}=1-j \quad \begin{aligned} & \text { Note that at resonance } Z / R=1 \text { from Eq. } 8 . \\ & \text { This is the minimum value. }\end{aligned}$

The reflection coefficient at $\omega=\omega_{\mathrm{H}}$ and $\omega=\omega_{\mathrm{L}}$ is:
These are calculated with respect to the normalized Zo value of 1
rho $:=\frac{(1+\mathrm{j})-1}{(1+\mathrm{j})+1} \quad$ rho $=0.2+0.4 \mathrm{i} \quad \mid$ rho $\mid=0.447 \quad$ Reflection coefficient
rho $:=\frac{(1-\mathrm{j})-1}{(1-\mathrm{j})+1} \quad$ rho $=0.2-0.4 \mathrm{i} \quad \mid$ rho $\mid=0.447 \quad$ Reflection coefficient

For the PARALLEL RLC circuit :
At $\omega=\omega_{\mathrm{H}}$ and $\omega=\omega_{\mathrm{L}}$ the normalized impedance $\mathrm{Z} / \mathrm{R}$ is $\mathbf{1}$ in parallel with $+/-\mathbf{j}$ :
Combining these impedances in parallel:
$\frac{Z}{R}=\frac{1 \cdot j}{1+j}=0.5+0.5 \mathrm{i}$
$\frac{Z}{R}=\frac{1 \cdot(-j)}{1-j}=0.5-0.5 i$
The reflection coefficient at $\omega=\omega_{\mathrm{H}}$ and $\omega=\omega_{\mathrm{L}}$ is:
rho $:=\frac{(0.5+0.5 \mathrm{i})-1}{(0.5+0.5 \mathrm{i})+1} \quad$ rho $=-0.2+0.4 \mathrm{i} \quad \mid$ rho $\mid=0.447 \quad$ Reflection coefficient
rho $:=\frac{(0.5-0.5 \mathrm{i})-1}{(0.5-0.5 \mathrm{i})+1} \quad$ rho $=-0.2-0.4 \mathrm{i} \quad \mid$ rho $\mid=0.447 \quad$ Reflection coefficient

For BOTH series and parallel circuits, the reflection coefficients, return loss and SWR all have the same absolute value at the 3 dB points, where $\omega=\omega_{\mathrm{H}}$ and $\omega=\omega_{\mathrm{L}}$

$$
\begin{array}{lll}
\text { RL }:=-20 \cdot \log (\mid \text { rho } \mid) & \text { RL }=6.99 & \text { Return Loss } \\
\text { SWRt }:=\frac{1+\mid \text { rho } \mid}{1-\mid \text { rho } \mid} & \text { SWRt }=2.61803 & \text { SWR Reference Value }
\end{array}
$$

## Example of RLC SERIES CIRCUIT

| $\mathrm{fr}:=10 \mathrm{MHz} \quad \mathrm{L}:=100 \mathrm{uH}$ | $\mathrm{R}:=50$ ohms | $\mathrm{Zo}:=\mathrm{R}$ |
| :---: | :---: | :---: |
| $C:=\frac{10^{6}}{(2 \cdot \pi \cdot \mathrm{fr})^{2} \cdot \mathrm{~L}}$ | $\mathrm{C}=2.533$ | C in pF is calculated to resonate at fr |
| XL(f) $:=\mathrm{j} \cdot 2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{L}$ | $\mathrm{XL}(\mathrm{fr})=6.283 \mathrm{i} \times 10^{3}$ | Reactances |
| $\mathrm{XC}(\mathrm{f}):=\frac{1}{\mathrm{j} \cdot 2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{C} \cdot 10^{-6}}$ | $\mathrm{XC}(\mathrm{fr})=-6.283 \mathrm{i} \times 10^{3}$ |  |
| $\mathrm{Z}(\mathrm{f}):=\mathrm{R}+\mathrm{XL}(\mathrm{f})+\mathrm{XC}(\mathrm{f})$ | $\mathrm{Z}(\mathrm{fr})=50$ | At resonance |
| rho(f) := $\left\|\frac{\mathrm{Z}(\mathrm{f})-\mathrm{Zo}}{\mathrm{Z}(\mathrm{f})+\mathrm{Zo}}\right\|$ | $\operatorname{rho}(\mathrm{fr})=0$ | rho $=0$ |
| $\operatorname{SWR}(\mathrm{f}):=\frac{1+\operatorname{rho}(\mathrm{f})}{1-\operatorname{rho}(\mathrm{f})}$ | SWR (fr) = 1 |  |
| $\mathrm{f}:=9.5,9.51 . .10 .5$ | The minimum SWR should be 1:1 at fr |  |



Finding the two frequencies F1 and F2 that give SWR $=\mathbf{2} .618$
SWRt $=2.618 \quad$ target SWR
$\mathrm{Fa}:=0.9998 \cdot \mathrm{fr} \quad$ start searching for f_low
Given
SWR $(\mathrm{Fa})=\mathrm{SWRt}$
F1 (SWRt) $:=\operatorname{Find}(\mathrm{Fa}) \quad$ f_low $:=\mathrm{F} 1(\mathrm{SWRt}) \quad$ f_low $=9.96029$
$\mathrm{Fb}:=1.0002 \cdot \mathrm{fr} \quad$ start searching for f_hi
Given
$\operatorname{SWR}(\mathrm{Fb})=\mathrm{SWRt}$
F2(SWRt) $:=\operatorname{Find}(F b) \quad$ f_hi $:=$ F2(SWRt) $\quad$ f_hi $=10.03987$
f_hi $-\mathrm{fr}=0.0399$

## Calculate the Relative Bandwidth Rel_BW (with respect to the resonant freq) at the target

 SWRRel_BW (SWRt) $:=\frac{\text { F2(SWRt) }- \text { F1 (SWRt })}{\mathrm{fr}}$
Rel_BW $($ SWRt $)=7.9578 \times 10^{-3}$

We can calculate the $Q$ at the target $\operatorname{SWR}=2.618$
$\mathrm{Q}:=\frac{1}{\text { Rel_BW(SWRt) }}$

Q from the circuit values, we get the same $Q$ value: (unloaded !)
$\mathrm{Q}:=\frac{2 \cdot \pi \cdot \mathrm{fr} \cdot \mathrm{L}}{\mathrm{R}}$
$\mathrm{Q}=125.664$
$\mathrm{Q}=125.664$

SWRref := 2.618

The reference BW is the BW at $S W R=2.618$
Ref_BW := Rel_BW(SWRref)
Ref_BW $=7.9576 \times 10^{-3}$


## Relative BW / Reference BW vs SWR

SWR := 1, 1.1 .. 6


For SWR = 2, the BW is 0.707 times the BW at the reference SWR of 2.618

For SWR = 5.83, the BW is 2.0 times
the BW at the reference SWR of 2.618
$\frac{\text { Rel_BW(2) }}{\text { Ref_BW }}=0.7071$
$\frac{\text { Rel_BW(5.83) }}{\text { Ref_BW }}=2$
$\frac{\text { Rel_BW(4) }}{\text { Ref_BW }}=1.5$

## Pick the SWR value that you like!

For the series RLC circuit, a a random length of low loss 50 ohm coax cable may also be connected between the RLC and the SWR measuring instrument.
With a coax line, the impedance will differ from $50+/-j 50$ ohms at the $S W R=2.618$ points, leaving the SWR bandwidth unchanged.

