THEORY AND TESTING OF DUPLEXERS

Jacques Audet VE2AZX ve2azx.net

September 2002 rev. March 2017 (pages 9,10,25) 1

VE2AZX@amsat.org

□ INTRO

□ WHY USE DUPLEXERS ?

□ BASIC TYPES OF DUPLEXERS

□ SIMPLE LC MODELS FOR EACH TYPE

□ ADJUSTMENT AND VERIFICATION

□ PUTTING IT ALL TOGETHER - EXAMPLES

PITFALLS

□ REFERENCES

WHY USE DUPLEXERS ?

DUPLEXERS...

- Allow simultaneous transmit and receive on the same antenna
- The Rx filter attenuates the TX signal
 ~ 75 dB or more (approx 30 million times) and vice-versa
- The Tx filter attenuates the TX broadband noise being fed into the Rx by a similar amount
- □ Three port devices:

CAVITIES IN GENERAL

- Use a very low loss transmission line to improve selectivity (high Q) (~0.08 dB loss / 100 ft for a 6 in. cavity @ 150 MHz)
- The resonator acts as a quarter wave antenna inside a closed box, with max. current at the base
- In out loops magnetically couple energy to the resonator
- Capacitive coupling may also used but not discussed here

LOOP COUPLING TO THE RESONATOR

□ Loop orientation affects coupling:

- □ Loop size: increasing the loop size increases coupling and its inductance as well
- □ Loop proximity from the resonator: placing the loop closer will increase coupling.
- □ Loop coupling affects the insertion loss and selectivity in the bandpass region and the notch frequency in notch-bandpass designs.

BASIC TYPES OF DUPLEXERS

TX - RX FREQ SEPARATION

□ LO – HI PASS FILTERS

WIDE

BANDPASS CAVITIES MEDIUM

□ NOTCH – BANDPASS CAVITIES NARROW

□ NOTCH CAVITIES NARROW

- □ THE QUARTER WAVELENGTH RESONATOR IS MODELED WITH A HIGH Q - LC CIRCUIT (2 x 5600 nH inductors and a capacitor)
- □ TYPICAL RESONATOR Qu VALUES: 2000 for 4 in. Cavity, > 5000 for a 6 in. cavity

BANDPASS RESONATOR RESPONSE CURVES

- CHANGING THE COUPLING TRADES BANDPASS LOSS FOR SELECTIVITY
- □ THE Qc OF THE COUPLING LOOPS DOES NOT AFFECT THE RESPONSE IF: Qc > 100

MEASURING THE Qu FACTOR (Unloaded Q of the cavity)

See also: http://ve2azx.net/technical/Q-FactorCalc.xls

A 6 in. VHF cavity should yield Qu > 4000, typically 5000

Measured values on a 6 in. cavity (notch): Q = 4650 (Davicom Technologies Inc model BR-15107) On a 6 in. bandpass cavity: Q = 5675 (Sinclair FP20107*3) 10

A MINIATURE BANDPASS CAVITY FROM HP

This is model HP 5253 Plug-in Frequency Converter
 Easily modified to form a bandpass cavity
 Covers 50 - 500 MHz frequency range

A MINIATURE BANDPASS CAVITY FROM HP

Adding the loop and cable (both sides)

A MINIATURE BANDPASS CAVITY FROM HP

Note: loops are oriented at right angle of each other to minimize direct loop to loop coupling

BANDPASS CAVITIES - OVERTONE OPERATION

- □ CAVITIES WILL OPERATE AT ODD MULTIPLES OF THEIR FUNDAMENTAL FREQUENCY
- OPERATION AT 3X and 5X THE FUNDAMENTAL FREQUENCY PROVIDES LOW LOSSES AND A HIGHER Qu FACTOR (Qu IS MULTIPLIED BY 1.7 AT 3X THE FUNDAMENTAL)

NOTCH – BANDPASS CAVITIES

□ LO PASS – HI PASS FILTERS

□ BANDPASS CAVITIES

► NOTCH – BANDPASS CAVITIES

DUAL LOOP NOTCH-BANDPASS CAVITIES

□ SINGLE LOOP SERIES RESONANT NOTCH-BANDPASS

□ SINGLE LOOP PARALLEL RESONANT NOTCH-BANDPASS (Q circuit)

□ A LOW VALUE CAPACITOR IS ADDED BETWEEN INPUT AND OUTPUT

- □ GENERATES A TRANSMISSION NOTCH BELOW THE BANDPASS
- □ AN INDUCTOR WILL SET THE NOTCH ABOVE THE BANDPASS
- □ NOTCH TUNING INTERACTS SOMEWHAT WITH CENTER FREQUENCY
- □ THE CAPACITOR MAY BE REPLACED BY A SERIES L-C THAT CAN GIVE L OR C BEHAVIOUR

- □ SERIES CAPACITOR BETWEEN INPUT AND OUTPUT (~ 2.3 pF) GIVES THE DESIRED NOTCH-BANDPASS CHARACTERISTIC ALLOWS NOTCH TUNING
- □ SERIES CAPACITOR TUNING SENSITIVITY: ~ 16 % PER 100 KHz (146 MHz) (REDUCING C MOVES THE NOTCH UP IN FREQUENCY)
- □ BANDPASS LOSS ~ UNCHANGED COMPARED TO STANDARD BANDPASS

□ REDUCING Qu FROM 5000 TO 2500 REDUCES THE NOTCH BY ~ 5 dB AND ADDS ~ 1 dB LOSS IN THE BANDPASS

□ THE BANDPASS CENTER HAS LOWEST SWR - ALWAYS

EFFECT OF CAVITY Q (Qu)

THE SWR CURVE DEFINES THE EXACT BANDPASS FREQUENCY

- □ SETTING THE NOTCH ABOVE THE BANDPASS REQUIRES REPLACING THE SERIES CAP BY A SERIES INDUCTOR (~ 500 nH at 146 MHz)
- □ REDUCING THE Q FACTOR OF THE LOOPS FROM 400 TO 200 DEGRADES THE NOTCH DEPTH BY ~ 1.5 dB

SETTING THE NOTCH ABOVE THE BANDPASS

- □ INCREASING THE RESONATOR LENGTH MOVES THE BANDPASS FREQUENCY DOWN
- □ SHIFTING THE BANDPASS FREQUENCY DOWN ALSO SHIFTS THE NOTCH FREQUENCY BY THE SAME AMOUNT

MOVING THE BANDPASS FREQUENCY DOWN MOVES THE NOTCH BY THE SAME AMOUNT 21

SERIES L-C BETWEEN INPUT AND OUTPUT

DUAL LOOP NOTCH-BANDPASS (modified bandpass) SERIES L-C BETWEEN INPUT AND OUTPUT

NOTCH ON HIGH SIDE

DUAL LOOP NOTCH-BANDPASS (modified bandpass) SERIES L-C BETWEEN INPUT AND OUTPUT

NOTCH ON LOW SIDE

Note the degradation of the attenuation above the pass frequency

24

 DUAL LOOP NOTCH-BANDPASS (modified bandpass)

 SERIES L-C BETWEEN INPUT AND OUTPUT

 See page 50 for more comparisons

NOTCH – BANDPASS SERIES RESONANT LOOP CAVITIES

□ DUAL LOOP NOTCH-BANDPASS CAVITIES

SINGLE LOOP SERIES RESONANT NOTCH-BANDPASS

□ SINGLE LOOP PARALLEL RESONANT NOTCH-BANDPASS (Q circuit)

ONLY ONE LOOP IS USED

□ A SERIES CAPACITOR ADJUSTS THE NOTCH FREQUENCY ABOVE AND BELOW THE BANDPASS

A SINGLE CONNECTOR WITH AN EXTERNAL TEE WILL WORK AS WELL

GIVES NOTCH – BANDPASS RESPONSE

□ THE COUPLING LOOP IS INITIALLY UNCOUPLED FROM THE RESONATOR (Removed from the cavity)

□ SERIES CIRCUIT GIVES MAXIMUM ATTENUATION AT SERIES RESONANCE (Coupling is zero)

□ NOTCH DEPTH IS A FUNCTION OF THE Q OF THE LOOP (Orange curve)

□ THE RESONATOR IS TUNED AT THE SAME FREQUENCY (With the loop inside the cavity and light coupling)

□ INCREASING THE COUPLING SPREADS THE TWO NOTCHES APART AND...

□ DECREASES THE INSERTION LOSS AT THE BANDPASS FREQUENCY

□ FOR 1 dB LOSS THE NOTCHES ARE AT +/- 1.5 MHz – NEED TO SHIFT THE DESIRED NOTCH

□ THE UPPER NOTCH FREQUENCY IS SHIFTED DOWN BY LOWERING THE LOOP RESONANT FREQUENCY (SOLID BROWN CURVE)

□ THE DEPTH OF THE UPPER NOTCH SUFFERS

□ TUNING THE LOOP BELOW AND ABOVE THE BANDPASS FREQUENCY WILL SET THE NOTCH +/- 600 KHz

□ THE Q OF THE LOOP SETS THE NOTCH DEPTH

□ THE Q OF THE CAVITY (Qu) AFFECTS BOTH THE BANDPASS LOSS AND THE NOTCH DEPTH

33

- UNTUNED COUPLING LOOP IN SERIES WITH A TRANSMISSION LINE
- PROVIDES NOTCH-BANDPASS OPERATION
- THE LINE LENGTH AND THE LOOP COUPLING ARE ADJUSTED TO OBTAIN THE DESIRED NOTCH BANDPASS RESPONSE.
- GIVES 2 NOTCHES AS IN THE RESONANT NOTCH BANDPASS

Chanks to: Pedro M.J. Wyns (ON7WP-AA9HX)

NOTCH – BANDPASS MODE PARALLEL RESONANT LOOP CAVITIES

□ DUAL LOOP NOTCH-BANDPASS CAVITIES

□ SINGLE LOOP SERIES RESONANT NOTCH-BANDPASS

SINGLE LOOP PARALLEL RESONANT NOTCH-BANDPASS (Q circuit)

PARALLEL RESONANT LOOP (Q circuit)

□ EXAMPLE OF A PARALLEL RESONANT LOOP

□ HERE THE CAPACITOR IS MADE WITH A SHORT LENGTH OF COAX

PARALLEL RESONANT LOOP (Q circuit)

- □ A QUARTER WAVELENGTH LINE TRANSFORMS THE LOOP PARALLEL CIRCUIT INTO A SERIES CIRCUIT – EFFECTIVELY
- □ OPERATION IS SIMILAR TO THE SERIES RESONANT LOOP
- □ TWO NOTCHES ARE ALWAYS PRESENT WITH THIS CONFIGURATION

NOTCH CAVITIES

□ HELIAX NOTCHERS

CAVITY NOTCHER for 146 MHz

EQUIVALENT CIRCUIT

CAVITY NOTCHER FREQUENCY RESPONSE

VARYING THE LOOP COUPLING AFFECTS THE NOTCH DEPTH AND
 DETUNES THE NOTCH FREQUENCY SOMEWHAT

CAVITY NOTCHER FREQUENCY RESPONSE

RESPONSE NOT SYMETRICAL AT +/- 600 KHz
 HIGH SIDE HAS A LOT MORE ATTENUATION AT + 600KHz

41

CAVITY NOTCHER WITH COMPENSATION CAPACITOR

- □ ADDING A COMPENSATION CAPACITOR DECREASES THE LOSSES ON THE UPPER SIDE
- □ THE COMPENSATION CAPACITOR HAS AN OPTIMUM VALUE FOR A GIVEN SPLIT
- □ ITS Q FACTOR IS NOT CRITICAL AN OPEN COAX STUB MAY BE USED

CAVITY NOTCHER WITH COMPENSATION CAPACITOR

CONSIDERABLY REDUCED HIGH SIDE INSERTION LOSS
 LOW SIDE NOW HAS THE HIGH INSERTION LOSS

CAVITY NOTCHERS - GENERAL

□ OBTAINING THE DEEPEST NOTCH REQUIRES:

INCREASING THE LOOP COUPLING

DECREASING THE LOOP INDUCTANCE

□ THESE TWO REQUIREMENTS ARE CONTRADICTORY SINCE

A LOW INDUCTANCE LOOP WILL HAVE LESS COUPLING AND VICE VERSA

□ IT MAY BE DIFFICULT TO GET 30 dB REJECTION ON A 6 in. CAVITY

□ THE LOW SIDE MAY HAVE TO BE COMPENSATED WITH AN INDUCTOR

TO ACHIEVE MINIMUM LOSSES (OR A SHORTED STUB)

□ THE Q FACTOR OF THE LOOPS IS NOT CRITICAL, AS LONG AS Q > 100 OR SO

□ THE NOTCH - BANDPASS MODE MAKES A MORE EFFICIENT USE OF THE CAVITY. NOTCH DEPTHS BETTER THAN 35 dB ARE EASILY OBTAINED WITH A 6 in. CAVITY

□ CAVITY NOTCHERS

HELIAX NOTCHER for 146 MHz

□ USES AN INDUCTIVE SHORTED STUB See ref. 3 and 4

□ THE STUB EXHIBITS SERIES RESONANCE AT THE NOTCH FREQUENCY

HELIAX NOTCHER - FREQUENCY RESPONSE

1 5/8 in. FOAM HELIAX Vf=0.87 50 ohms 0.156 dB/100 ft @ 50 MHz Series cap = 50 ohm foam coax Vf=0.87 2.2 dB/100 ft @ 150 MHz

ATTENUATION AND LENGTH DATA FOR THE HELIAX NOTCHER

1 5/8 in. FOAM HELIAX Vf=0.87 50 ohms 0.156 dB/100 ft @ 50 MHz Series cap = 50 ohm foam coax Vf=0.87 2.2 dB/100 ft @ 150 MHz

NOTE: Use with a $\lambda/4$ connecting line. The line adds ~ 5 dB to the notch depth

48

COMPARISONS

CAVITY TYPE	PLUS	MINUS
BANDPASS	• EASIEST TO ADJUST • INCREASING REJECTION OF OUTSIDE SIGNALS	POOR REJECTION CLOSE TO BANDPASS (12-18 dB @ 600 KHz on 2m)
DUAL LOOP	 BEST NOTCH DEPTH ~ 45 dB typical 6" cavity ONLY ONE NOTCH NOTCH TUNE SENSITIVITY IS LOW: 16% / 100KHz 	 FLOATING SERIES CAPACITOR SERIES INDUCTOR DIFFICULT TO ADJUST SOME REJECTION OUTSIDE BANDPASS NOTCH FREQ. INTERACTS SOMEWHAT WITH BANDPASS FREQUENCY
NOTCH-BANDPASS		
	 EASY TO ADJUST VIA SER CAP OR COUPLING GOOD NOTCH DEPTH ~ 37 dB typical 6" cavity NOTCH FREQ. INDEPENDANT OF BANDPASS FREQUENCY 	• TWO NOTCHES - MISI FADING
SINGLE LOOP SERIES RESONANT NOTCH-BANDPASS		 • NOTCH TUNE SENSITIVITY IS HIGH: -1% / 100KHz • LOOP Q DETERMINES NOTCH DEPTH • LITTLE REJECTION OUTSIDE BANDPASS AND NOTCH
SINGLE LOOP PARALLEL RESONANT NOTCH-BANDPASS (Q circuit)	• SAME AS SERIES RESONANT LOOP	• SAME AS SERIES RESONANT LOOP • QUARTER WAVELENGTH CABLE INTRODUCE ADDITIONAL LOSSES
NOTCH CAVITIES	 ATTENUATE A NARROW BAND OF FREQUENCIES MAY BE BUILT USING HELIAX CABLE 	 NOTCH DEPTH NOT AS GOOD AS IN NOTCH-BANDPASS DESIGNS USE WITH BANDPASS CAVITIES TO PROVIDE REJECTION FAR FROM TX/RX

COMPARISONS

50

TUNING INDIVIDUAL CAVITIES

TUNING BANDPASS CAVITIES

- □ ADJUST THE BANDPASS FREQUENCY FOR MAXIMUM SIGNAL
- □ CHECK THE INSERTION LOSS. CHANGE THE LOOP COUPLING IF REQ'D

TUNING NOTCH - BANDPASS CAVITIES

ABOUT THE VOLTMETER....

- □ WIDE BAND VOLTMETERS MAY PICK UP GENERATOR HARMONICS WHEN MEASURING NOTCH DEPTH
- □ A SELECTIVE VOLTMETER IS REQUIRED

TUNING NOTCH - BANDPASS CAVITIES

DUAL LOOP CAVITIES (MODIFIED BANDPASS TYPES)

□ ADJUST THE BANDPASS FREQUENCY FOR MAXIMUM SIGNAL

□ CHECK THE PASSBAND ATTENUATION AND ADJUST THE LOOP COUPLING AS REQUIRED (typically 0.3 TO 1.5 dB)

□ TO INCREASE THE NOTCH FREQUENCY:

DECREASE THE NOTCH CAPACITOR OR DECREASE THE NOTCH INDUCTOR

□ NOTE THAT NOTCH DEPTH GETS WORSE AS THE NOTCH FREQUENCY GETS CLOSER TO THE BANDPASS PREQUENCY

□ ADJUST THE BANDPASS FREQUENCY FOR LOWEST SWR

□ RECHECK THE INSERTION LOSS AT THE BANDPASS FREQUENCY

□ RECHECK THE NOTCH FREQUENCY AND DEPTH

TUNING NOTCH - BANDPASS CAVITIES

SERIES OR PARALLEL LOOP CAVITIES

□ ADJUST THE BANDPASS FREQUENCY FOR MAXIMUM SIGNAL

□ CHECK THE PASSBAND ATTENUATION AND ADJUST THE LOOP COUPLING AS REQUIRED (typically 0.3 TO 1.5 dB)

□ TO INCREASE THE NOTCH FREQUENCY:

UPPER NOTCH - ABOVE BANDPASS:

DECREASE THE NOTCH CAPACITOR OR INCREASE COUPLING LOWER NOTCH - BELOW BANDPASS:

DECREASE THE NOTCH CAPACITOR OR DECREASE COUPLING

□ NOTE THAT NOTCH DEPTH GETS WORSE AS THE NOTCH FREQUENCY GETS CLOSER TO THE BANDPASS PREQUENCY

□ ADJUST THE BANDPASS FREQUENCY FOR LOWEST SWR

□ RECHECK THE INSERTION LOSS AT THE BANDPASS FREQUENCY

□ RECHECK THE NOTCH FREQUENCY AND DEPTH

NOTCH - BANDPASS CAVITIES

LOOP RESONANCE VERIFICATIONS - SERIES OR PARALLEL LOOPS

BEST DONE WITH THE LOOP REMOVED FROM THE CAVITY

UPPER NOTCH - ABOVE BANDPASS: (see the graph below) THE LOOP SHOULD RESONATE FROM ~ 130 to 140 MHz

LOWER NOTCH - BELOW BANDPASS: THE LOOP SHOULD RESONATE FROM ~ 150 to 160 MHz

SHOULD GIVE AT LEAST 34 dB ATTENUATION (IN A 6 in. CAVITY)

NOTCH - BANDPASS CAVITIES SINGLE LOOP SERIES RESONANT TYPE

MEASURING LOOP INDUCTANCE

MEASURE THE ATTENUATION IN dB CAUSED BY INSERTING THE LOOP IN A SHUNT CIRCUIT (no series cap.) WITH A GENERATOR / DETECTOR IMPEDANCE = R (ohms) at a FREQUENCY: F in MHz AND COMPUTE THE INDUCTANCE L in nH:

PUTTING IT ALL TOGETHER

DUPLEXER BUILT WITH FOUR 6 in. SERIAL LOOP CAVITIES

EXAMPLE OF DUPLEXER BUILT WITH FOUR 6 in. SERIAL LOOP CAVITIES

- □ BANDPASS INSERTION LOSS: ~ 2.2 Db (1 dB PER CAVITY + λ /4 LINE LOSSES)
- □ NOTCH DEPTH: ~ 85 dB
- □ NOTCH DEPTH = ~ SUM OF NOTCH DEPTH OF EACH CAVITY + 5.5 dB PER λ/4 LINE Example: NOTCH DEPTH = 37 dB + 37 dB + 5.5 x 2 cables = 85 dB

EXAMPLE OF DUPLEXER BUILT WITH FOUR 6 in. SERIAL LOOP CAVITIES

EXAMPLE OF DUPLEXER BUILT WITH FOUR 6 in. SERIAL LOOP CAVITIES

- □ THE λ/4 CABLES AT THE TEE JUNCTION HAVE BEEN INCREASED IN LENGTH 33%
- □ SLIGHT CHANGE IN RESPONSE
- □ SWR CURVE HAS RIPPLES NOW. THIS MAY BE USED TO CHECK FOR PROPER CABLE LENGTHS

EXAMPLE OF DUPLEXER BUILT WITH (2) BANDPASS + (4) SERIAL LOOP NOTCH BANDPASS CAVITIES

- □ BANDPASS CAVITIES SHOULD BE PLACED AHEAD OF SERIAL LOOP CAVITIES
- □ THE 30° LINE AFTER THE BANDPASS CAVITIES ADDS ~ 5dB NOTCH DEPTH (Two Loop Notch Bandpass cavities require different cable lengths)
- □ IMPROVES REJECTION AWAY FROM THE NOTCH BANDPASS FREQUENCIES

EXAMPLE OF DUPLEXER BUILT WITH TWO BANDPASS + FOUR SERIAL LOOP CAVITIES

FEATURES:

- 3 dB BANDPASS LOSS (~ 1dB per cavity)
- ~102 dB NOTCH
- EXCELLENT REJECTION OF OUT OF BAND SIGNALS

Calculating the Cable Lengths

$$L := \deg \cdot 32.785 \cdot \frac{Vf}{f}$$

Where:

- L = length in inches. This is the <u>overall length</u> from
 - The connector base to connector base
 - From connector base to the center of the Tee (if used)
- Deg = electrical degrees as req'd from previous slides
 - If the calculated length is too short add 180 degrees or an integer multiple.
- Vf = Coax velocity factor
- f = mid frequency in MHz
- = average frequency of the bandpass and notch frequencies.

Example:

With Vf = 0.67 f = 220 MHz deg = 28.5 Gives: L = 2.845 inch ... which is probably too short !

We can add any integer multiple of a half wavelength (180 deg.) to the cable We recalculate using deg = 28.5 + 180 = 208.5Gives L = 20.82 in. ... much better !

PITFALLS

AVOID LOW QUALITY CONNECTORS SPECIALLY TEES.

The picture on the right shows an N type connector that uses a steel spring for making contact with the thru line. The added inductance was calculated from return loss measurement at 100 MHz (9.5 dB) and 1 GHz (5 dB) with both female ends terminated (50 ohms) This gave ~ 7 nH inductance. Therefore a 100 nH loop will have its inductance increased by 7%, thus lowering its resonant frequency 3.5% or ~ 5 MHz at 146 MHz !

□ USE SILVER PLATED CONNECTORS

- UNPLATED COPPER CAVITIES MAY BE POLISHED AND CLEANED WITH "BRASSO" (liquid copper / brass cleaner) LEAVES A PROTECTIVE FILM
- □ SLIDING CONTACTS MAY BE LUBRICATED WITH SILICONE CLEANER OR VASELINE
- □ TERMINATE THE "UNUSED" PORT WHEN TESTING FOR LOSS OR SWR

CENTER CONNECTOR USES A SPRING FOR CONTACT !

TEE CONNECTOR TEST SET-UP

PITFALLS

□ TEMPERATURE SENSITIVITY: UNCOMPENSATED Cu RESONATORS WILL SHOW A TEMPERATURE COEFFICIENT OF ~ -1.3 KHz / degC (146 MHz)

□ DOUBLE SHIELD CABLES AND N TYPE CONNECTORS PREFERED

AVOID – IF POSSIBLE - UHF ADAPTERS THEIR IMPEDANCE IS BELOW 50 OHMS: ~33 OHMS THEY WILL LIKELY INCREASE THE SWR See: http://www.qsl.net/vk3jeg/pl259tst.html

67

CONCLUSION

THIS PRESENTATION COVERS THE MOST IMPORTANT DUPLEXER ELEMENTS: BANDPASS + 4 TYPES OF NOTCH – BANDPASS + NOTCH DESIGNS

□ SIMULATION SOFTWARE WITH REAL TIME TUNING CAPABILITIES ALLOWS « BREADBOARDING » DUPLEXERS

□ LEARN TUNING, CHECK FOR SENSITIVITY TO COMPONENT VARIATIONS SUCH AS Q FACTOR, CABLE LENGTHS ETC.

REFERENCES

□ Repeater Builder Website: http://www.repeater-builder.com/rbtip/

- LINEAR SIMULATION SOFTWARE: SuperStar from Eagleware - now Agilent (used here) Designer SV for Windows from Ansoft (free) http://www.ansoft.com/downloads.cfm LT Spice / Switcher CAD (free) http://www.linear.com/company/software.jsp
- □ Duplexer Theory and Testing by Dave Metz WA0UAQ (.pdf format)
- KI7DX 6 Meter Repeater http://www.wa7x.com/ki7dx_rpt.html
- □ 6 Meter Heliax Duplexers http://www.dallas.net/~jvpoll/dup6m/dup6m.html
- Duplexers: theory and tune up http://www.seits.org/duplexer/duplexer.htm
- □ Upgrading Boonton Models 92/42 RF Voltmeters Jacques Audet Communications Quarterly Spring 97
- □ THANKS to Jean-Nicol VE2BPD for the photos and the bad tee
- THANKS to Bob G3VVT for reporting the reversed notch location in double loop cavities.